07:08
Принцип работы турбины. Как работает турбонаддув в автомобиле.

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота.

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

- Установка турбонаддува
- Увеличение рабочего объёма двигателя
- Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

принцип работы турбокомпрессора

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Плюсы и минусы турбонаддува

Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта дроссельная заслонка, чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

турбоподхват турбонаддува

Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

  • использование турбины с переменной геометрией;
  • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
  • применение комбинированной схемы наддува.

Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.

Схема так называемого комбинированного наддува или, как ее называют автопроизводители, twincharger, подразумевает совместное использование механического и турбонаддува. При малых оборотах двигателя наддув обеспечивается механическим нагнетателем, а турбина вступает в действие при увеличении числа оборотов. При этом механический нагнетатель отключается. По такой схеме работают наддувные моторы TSI компании Volkswagen.

Как видим, принципы работы турбонаддува достаточно просты и понятны. При этом сегодня автопроизводители всячески делают ставку на турбированные агрегаты малого рабочего объема, которые обеспечивают достаточную мощность при относительной экологической чистоте выхлопа.

Но не следует забывать и еще об одном серьезном недостатке – турбированный мотор испытывает гораздо большие нагрузки и, что вполне закономерно, имеет меньший моторесурс, чем безнаддувный агрегат. Соответственно, взвесив все преимущества и недостатки, и следует выбирать тот или иной силовой агрегат.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

 

Источники:voditeliauto.ru, brturbo.ru.
Марка: Другие | Просмотров: 10028 | | Теги: преимущества турбированных моторов, турбонагнетатель, турбонаддув в автомобиле, принцип работы турбины автомобиля, турбо | Рейтинг: 5.0/2
Заметки: 0