07:25
Распределение и система зажигания двигателя.

Существует несколько способов распределение высокого напряжения по свечам зажигания в бензиновом двигателе. Ранее самым распространённым и единственным было роторное или высоковольтное распределение. Его основным узлом являлся трамблёр (прерыватель-распределитель или датчик-распределитель). Распределитель состоит из крышки трамблёра и бегунка (ротора).

Со вторичной обмотки катушки зажигания на центральный электрод распределителя подаётся высокое напряжение, которое при помощи бегунка передаётся на боковые электроды распределителя. Скорость вращения бегунка равна скорости вращения распредвала и относится к оборотам коленвала в отношении 1:2.. боковые электроды крышки трамблёра соединены со свечами зажигания по средствам высоковольтных проводов. Основным недостатком этой системы является трудности в обеспечении своевременной подачи напряжения на свечи зажигания при разных оборотах и режимах работы двигателя. Частично эта проблема решалась применением центробежного и вакуумного регулятора угла опережения зажигания, а в последствии применением электронных блоков, но полностью проблему не решало. Кроме того система имеет множество соединений и изнашивающихся контактов, что значительно снижает надёжность.

Типовая система зажигания

Типовая система зажигания схема
Компоненты системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя.

Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:
  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом — замыканием и размыканием контактов цепи прерывателем-распределителем.

Контактная система зажигания
Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания — определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс. В чем отличия контактно-транзисторной системы зажигания Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

С развитием электронных систем появились низковольтные или статические системы распределения зажиганием, то есть не подвижные. Это стало возможным благодаря коммутации высоковольтных катушек электронными блоками. Эта система полностью подстраивает момент искрообразования в зависимости от оборотов и нагрузки на двигатель. Существует несколько схем исполнения статического распределения. В первом варианте два цилиндра с моментом зажигания, смещённым на 360 гр. по коленчатому валу одновременно получают высокое напряжение от катушки зажигания. В этом случае в двух цилиндрах одновременно происходит искрообразование. Так как свечи соединены последовательно с вторичной обмоткой катушки зажигания, то искровой разряд на свечах будет являться одним и тем же разрядом в последовательно соединённых искровых промежутках, и протекать будет в одном направлении. Следовательно, если на одной свече из пары дуга искрового разряда направлена от центрального электрода к боковому, то на другой свече, наоборот, от бокового к центральному. В то же время энергия искры будет различна. Это связано со средой, в которой образовалась искра. Когда одна свеча зажигания находится в цилиндре, в котором происходит такт сжатия, другая находится в цилиндре, где происходит конец такта выпуска. На одну из свечей воздействует высокое давление, и она воспламеняет смесь, искра на другой свече проскакивает в холостую. Энергия искрового разряда, не воспламеняющего смесь, такая же, как суммарная потеря тока в искровых промежутках между ротором и боковыми контактами при высоковольтном распределении зажигания. Картина меняется на противоположную через один такт. При этом способе используется одна катушка в двухцилиндровом двигателе и две катушки в четырёх цилиндровом, работающие попарно 1 – 4 и 2 – 3 цилиндры. Управление катушками осуществляется двухканальным коммутатором по команде контроллера. Часто ключ управления катушками встраивают в контроллер.

Контактно-транзисторная система зажигания устройство
Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика. В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

В этой системе практически не существует потерь напряжения, как в предыдущих, и работа каждой свечи не зависит от работы других свечей, как в первом и втором вариантах статического зажигания. Кроме того в этом случае осуществляется точная подстройка угла опережения зажигания непосредственно в каждом цилиндре, что позволяет осуществлять полное сжигание топлива снижая тем самым выброс вредных веществ в атмосферу.

Электронная и микропроцессорная системы зажигания, устройство
Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом — отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Как работает система зажигания

Источники: avtolektron.rutechautoport.ru.

Марка: Другие | Просмотров: 6437 | | Теги: Транзисторная, система зажигания, Особенности, устройство, принцип работы системы зажигания, Схема, плюсы, порядок, какая лучше, Бесконтактная, электронная, диодная, минусы, микропроцессорная | Рейтинг: 5.0/1
Заметки: 0